69 research outputs found

    Minimum Degrees of Minimal Ramsey Graphs for Almost-Cliques

    Full text link
    For graphs FF and HH, we say FF is Ramsey for HH if every 22-coloring of the edges of FF contains a monochromatic copy of HH. The graph FF is Ramsey HH-minimal if FF is Ramsey for HH and there is no proper subgraph FF' of FF so that FF' is Ramsey for HH. Burr, Erdos, and Lovasz defined s(H)s(H) to be the minimum degree of FF over all Ramsey HH-minimal graphs FF. Define Ht,dH_{t,d} to be a graph on t+1t+1 vertices consisting of a complete graph on tt vertices and one additional vertex of degree dd. We show that s(Ht,d)=d2s(H_{t,d})=d^2 for all values 1<dt1<d\le t; it was previously known that s(Ht,1)=t1s(H_{t,1})=t-1, so it is surprising that s(Ht,2)=4s(H_{t,2})=4 is much smaller. We also make some further progress on some sparser graphs. Fox and Lin observed that s(H)2δ(H)1s(H)\ge 2\delta(H)-1 for all graphs HH, where δ(H)\delta(H) is the minimum degree of HH; Szabo, Zumstein, and Zurcher investigated which graphs have this property and conjectured that all bipartite graphs HH without isolated vertices satisfy s(H)=2δ(H)1s(H)=2\delta(H)-1. Fox, Grinshpun, Liebenau, Person, and Szabo further conjectured that all triangle-free graphs without isolated vertices satisfy this property. We show that dd-regular 33-connected triangle-free graphs HH, with one extra technical constraint, satisfy s(H)=2δ(H)1s(H) = 2\delta(H)-1; the extra constraint is that HH has a vertex vv so that if one removes vv and its neighborhood from HH, the remainder is connected.Comment: 10 pages; 3 figure

    In situ detection of dopamine using nitrogen incorporated diamond nanowire electrode

    Get PDF
    [[abstract]]Significant difference was observed for the simultaneous detection of dopamine (DA), ascorbic acid (AA), and uric acid (UA) mixture using nitrogen incorporated diamond nanowire (DNW) film electrodes grown by microwave plasma enhanced chemical vapor deposition. For the simultaneous sensing of ternary mixtures of DA, AA, and UA, well-separated voltammetric peaks are obtained using DNW film electrodes in differential pulse voltammetry (DPV) measurements. Remarkable signals in cyclic voltammetry responses to DA, AA and UA (three well defined voltammetric peaks at potentials around 235, 30, 367 mV for DA, AA and UA respectively) and prominent enhancement of the voltammetric sensitivity are observed at the DNW electrodes. In comparison to the DPV results of graphite, glassy carbon and boron doped diamond electrodes, the high electrochemical potential difference is achieved via the use of the DNW film electrodes which is essential for distinguishing the aforementioned analytes. The enhancement in EC properties is accounted for by increase in sp2 content, new C–N bonds at the diamond grains, and increase in the electrical conductivity at the grain boundary, as revealed by X-ray photoelectron spectroscopy and near edge X-ray absorption fine structure measurements. Consequently, the DNW film electrodes provide a clear and efficient way for the selective detection of DA in the presence of AA and UA.[[booktype]]紙

    Advanced material against human (Including Covid‐19) and plant viruses: nanoparticles as a feasible strategy

    Get PDF
    The SARS‐CoV‐2 virus outbreak revealed that these nano‐pathogens have the ability to rapidly change lives. Undoubtedly, SARS‐CoV‐2 as well as other viruses can cause important global impacts, affecting public health, as well as, socioeconomic development. But viruses are not only a public health concern, they are also a problem in agriculture. The current treatments are often ineffective, are prone to develop resistance, or cause considerable adverse side effects. The use of nanotechnology has played an important role to combat viral diseases. In this review three main aspects are in focus: first, the potential use of nanoparticles as carriers for drug delivery. Second, its use for treatments of some human viral diseases, and third, its application as antivirals in plants. With these three themes, the aim is to give to readers an overview of the progress in this promising area of biotechnology during the 2017–2020 period, and to provide a glance at how tangible is the effectiveness of nanotechnology against viruses. Future prospects are also discussed. It is hoped that this review can be a contribution to general knowledge for both specialized and non‐specialized readers, allowing a better knowledge of this interesting topic.REDES‐ANID. Grant Number: 180003 Universidad de La Frontera. Grant Number: DI20‐1003 FAPESP. Grant Numbers: 2018/08194‐2, 2018/02832‐7 CNPq. Grant Numbers: 404815/2018‐9, 313117/2019‐5 CONICYT/FAPESP. Grant Number: 2018/08194‐2 Coordenação de Aperfeiçoamento de Pessoal de Nível Superior. Grant Numbers: 001, ANID/FONDAP/15130015 FCT. Grant Number: PTDC/CTM‐TEX/28295/2017 FEDER POCI Portugal 2020 program COMPETE. Grant Number: UID/CTM/00264/2019 FCT/MCTE

    The genetic architecture of the human cerebral cortex

    Get PDF
    The cerebral cortex underlies our complex cognitive capabilities, yet little is known about the specific genetic loci that influence human cortical structure. To identify genetic variants that affect cortical structure, we conducted a genome-wide association meta-analysis of brain magnetic resonance imaging data from 51,665 individuals. We analyzed the surface area and average thickness of the whole cortex and 34 regions with known functional specializations. We identified 199 significant loci and found significant enrichment for loci influencing total surface area within regulatory elements that are active during prenatal cortical development, supporting the radial unit hypothesis. Loci that affect regional surface area cluster near genes in Wnt signaling pathways, which influence progenitor expansion and areal identity. Variation in cortical structure is genetically correlated with cognitive function, Parkinson's disease, insomnia, depression, neuroticism, and attention deficit hyperactivity disorder
    corecore